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Abstract 

This paper presents the approach to assess the global landslide hazard in the Global 

Infrastructure Resilience Index (GIRI) for the Biennial Global Infrastructure Resilience Report 

of the Coalition for Disaster Resilient Infrastructure (CDRI). The methodology involves 

integrating landslide susceptibility and earthquake characteristics or rainfall data to determine, 

on a global scale, the probability of earthquake- and precipitation-induced landslides. The latter 

is assessed for both present and future climate conditions. The susceptibility map categorises 

different terrains into five susceptibility classes, considering factors such as slope, vegetation 

(land use), lithology, and soil moisture, using global datasets. Rainfall information is gathered 

from the W5E5 dataset from 1979 to 2016 and the IPSL-CM6A-LR climate model from the 

ISIMIP3b dataset, covering the SSP126 and SSP585 scenarios for 2061-2100. To evaluate the 

potential for rainfall-triggered landslides, 24-hour rainfall intensities are utilised to classify areas 

into five rainfall hazard classes. The potential for earthquake-induced landslides is assessed 

based on the peak ground acceleration (PGA) of the earthquake event (scenario) at a given 

location and the susceptibility index of the terrain at that location. The landslide susceptibility 

map(s) and rainfall data or earthquake PGA are combined to produce a hazard matrix. The result 

is a probabilistic hazard map that can be used for scenario-based assessment of global landslide 

risk to critical infrastructure, with a resolution of three arc seconds (approximately 90 metres at 

the equator) for the globe. 

Keywords: Landslides, rainfall-induced, earthquake-induced, climate change, hazard, global 

scale 
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 Introduction 
The term “landslide” refers to events involving gravity-driven, down-slope mass movement, like 

rockslides, debris flows, and slow-moving earth flows. Major landslides are often triggered by 

an extreme rainfall event, a strong earthquake or anthropogenic factors (human activity).  

Rainfall- and earthquake-induced landslides represent an important hazard in mountainous 

regions worldwide. Landslides commonly impact the functioning of infrastructure assets such 

as roads and railways and occasionally damage buildings or result in fatalities (Petley 2012; 

Froude and Petley 2018). Precipitation-induced landslides are commonly triggered by short and 

intense rainfall events (Caine 1980; Guzzetti et al. 2008). As a consequence of climate change, 

the frequency and intensity of severe rainfall events that usually trigger landslides are expected 

to increase in some regions (Gariano and Guzzetti 2016). In addition, due to societal changes, 

tourism development, and the increased use of transport networks in mountain areas, the 

exposure of communities to landslides is growing in many parts of the world. Thus, 

understanding how the landslide hazard will change in future is crucial in planning mitigation 

measures along linear infrastructure and reducing the risk to the population. Earthquakes are 

another common triggering mechanism of landslides (e.g. Keefer 1984). Landslides triggered 

by strong earthquakes in mountainous areas often have catastrophic consequences. For example, 

about 25% of the 87,000 casualties (69,000 confirmed killed and 18,000 missing) caused by the 

Wenchuan Earthquake of 12 May 2008 were due to the landslides triggered by that event (Zhang 

et al. 2014). 

Within the Natural Disaster Hotspots project (Dilley 2005; Nadim et al. 2006), landslide hazard 

maps were developed using global topography, lithology, earthquake and climate datasets to 

identify the most exposed countries. Subsequently, this approach was refined and improved and 

has been employed in various global (Nadim et al. 2013) and continental (Jaedicke et al. 2014) 

studies, including the Global Assessment Reports (GAR) of UNDRR (then UNISDR). 

This paper aims to present the components of the landslide hazard model developed for the 

Flagship Report of The Coalition for Disaster Resilient Infrastructure (CDRI) to evaluate the 

global risk posed by earthquake- and rainfall-induced landslides to road and railway 

infrastructure, the latter both for the present climate regime and for future climate scenarios. The 

model presented in this paper (herein referred to as the GIRI landslide model) has a resolution 

that is about ten times greater than the GAR model, and it can be used to assess landslide 

probability for specific rainfall and earthquake scenarios. 
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 GIRI landslide model 
The GIRI model is based on the model that was originally developed by (Nadim et al. 2006) in 

the project "Natural disaster hotspots – a global risk report" for the World Bank (Dilley 2005) 

to identify the global landslide hazard and risk "hotspots". Its inputs are (i) susceptibility 

information and (ii) gridded information of different scenarios for each landslide-triggering 

factor, including rainfall and earthquake. The output consists of global scenario-based landslide 

hazard maps that can be used to evaluate the risk to linear infrastructure. Figure 1 shows a 

general flowchart of the GIRI landslide model.  

In the following sections, the components of the GIRI landslide model are explained in more 

detail.  

 

Figure 1 Flowchart of the scenario-based landslide hazard model and risk assessment for 
critical infrastructure. 
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 Landslide susceptibility 
In the GIRI landslide hazard model, the susceptibility map distinguishes landslide-prone areas. 

The susceptibility map has been derived by combining the information in global open-source 

datasets describing the topography (slope angle), lithology, vegetation, and soil moisture 

information (Table 1). It classifies the globe into five landslide susceptibility categories 

corresponding to "Very Low", "Low", "Moderate", "High", and "Very High" susceptibility. 

Additionally, the global landslide database for rainfall-induced landslides has been employed to 

visually analyse the GIRI landslide susceptibility map outputs for rainfall-induced landslides. 

The following subsections introduce the input datasets used to compute susceptibility and the 

method applied to obtain the susceptibility factors. Then, the method to calculate the overall 

landslide susceptibility is explained in more detail. 

Table 1 Datasets used in the GIRI landslide susceptibility model for rainfall-induced Landslides. 

Type Type of landslide Source Coverage Resolution 

Slope Rainfall-induced 
Earthquake-induced 

Derived from MERIT-Hydro 
DEM 

Global 0.00083°≈ 90m 
@ equator 

Lithology Rainfall-induced 
Earthquake-induced 

Global Lithological Map 
database (GLiM) 

Global Polygon data 

Soil moisture Rainfall-induced 
 

Current climate: W5E5 
Future climate: IPSL-CM6A-
LR model from the ISIMIP3b 
data set SSP126 and SSP585 
scenarios 

Global 0.5° 

Earthquake-induced ERA5 soil moisture 
climatology 

Global 0.25° 

Land cover Rainfall-induced 
Earthquake-induced 

ICDR Land Cover 2020 Global 0.002778° 

Landslide 
database 

Rainfall-induced COOLR - NASA Global Point data  
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 From input data to susceptibility factors 

Slope factor 
The slope calculation was done using the open-access software Whitebox Geospatial Analysis 

Tools (Whitebox GAT) developed by Lindsay (2016). The Slope tool uses the 3 × 3 polynomial 

fitting method for equal angle grids, as Florinsky (2016) and Florinsky (2017) described. The 

calculations are based on the spaceborne MERIT digital elevation model (DEM) by (Yamazaki 

et al. 2017) in a geographic coordinate system (WGS84). The pixels with DEM data are in 

angular units with a 3" resolution (~90 metres at the equator). The data are available as 5° × 5° 

tiles (6000 pixels × 6000 pixels), compressed into 30° × 30° packages. 

Due to the large number of files (1150) and data size, the process was carried out in a series of 

(parallelised) Python scripts. These scripts are implemented by using Multiprocessing. It is an 

iterative procedure tailored towards the data structure and the parallelisation of the calculations, 

while the actual processing of each tile is implemented as a subclass. 

The DEM was first pre-processed (mosaicked) into a single global raster containing all files 

using the GDAL Virtual Format to avoid edge contamination in the slope analysis. From this 

dataset, GDAL Translate was used to extract a new set of buffered tiles, using 5 pixels as the 

buffer size. The buffer size is the number of pixels multiplied by the pixel size (3 arc-seconds) 

measured in degrees. 

The first step calculates the slope and stores the output in the same structure as the original DEM. 

The second step reads and transforms all layers (vegetation, lithology, moisture, and slope) into 

tiles with the exact resolution as the original DEM. The third step loads all the previous layers, 

transforming layers into susceptibility factors and calculating susceptibility. The fourth step 

reclassifies the susceptibility into susceptibility classes (1 to 5). The output is structured 

according to the same groups and tiles as the original DEM. 

The slope data were then reclassified by an expert using information on landslide frequency 

distributions worldwide. Cells were distributed in the six different susceptibility categories (0 – 

5) according to their susceptibility degree, as presented in Table 2. Intuitively, the greater the 

slope angle, the more susceptible the terrain is. However, since most soils have an internal 

friction angle smaller than 36°, slopes steeper than 36° are not likely to be covered by sediments. 

To account for this, the susceptibility factor for very steep slopes (steeper than 36°) has been set 

to decrease (see Table 2). Slopes steeper than 50° consist primarily of hard rock. It is essential 
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to notice that for slopes less steep than 6° (i.e., for flat or nearly flat areas), the slope factor has 

been set equal to zero because the resulting landslide hazard is negligible, even if all the other 

factors are favourable.  

Table 2  Susceptibility index assigned to each slope class. 

Range of slopes angle (unit: 1/100 degrees) Classification Sr 

0000 – 600 Very low 0 

601 – 1200 Low 1 

1201 – 1800 Moderate 2 

1801 – 2400 Medium 3 

2401 – 3000 High 4 

3001 – 3600 Very high 5 

3601 – 4000 Probably stiff soil 4 

4001 - 4400 Probably rock 3 

4401 - 5000 Probably hard rock 2 

> 5000 Stable hard rock 1 

No Data No Data No Data 

 
 
Lithology factor  
Soil properties play a crucial role in determining slope stability. Ideally, detailed geotechnical 

information on the soil cover should be used to determine if the conditions for landslide initiation 

are met. However, only a general lithological description of the various locations is available at 

the global scale.  Therefore, assessing the terrain susceptibility using the information available 

about sediment strength at the global scale has been challenging. 

In this study, we have utilised the information in the Global Lithological Map database (referred 

to as GLiM - Hartmann and Moosdorf, 2012). GLiM was constructed by compiling existing 

regional geological maps, which were translated into lithological information using relevant 

regional literature. The database encompasses 1,235,400 polygons and employs a three-layer 

classification system for lithology. The first level contains 16 lithological classes comparable to 

previously applied definitions in global lithological maps. The two additional levels consist of 

12 and 14 subclasses, offering more detailed descriptions of specific rock attributes.  
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For our work, we have rasterised the GLiM to match the resolution of the slope map. The 

information of the lithology classes and subclasses have been used to reclassify the world into 

three susceptibility classes (1 – 3) representing lithologies with low, moderate and high 

relevance for landslide susceptibility.  

Soil moisture factor 
Soil moisture plays a relevant role in slope stability. As water infiltrates the soil, pore pressures 

increase, and shear strength decreases, eventually leading to failure if the soil strength is low 

and the slope is steep. In the GIRI landslide susceptibility assessment for rainfall-induced 

landslides, rainfall data with a spatial resolution of 0.5° has been used as a proxy to assess the 

soil moisture conditioning factors. This method has allowed us to obtain susceptibility maps for 

future climate scenarios. 

For 1979-2016, the W5E5 precipitation estimates (Lange 2019) have been employed. More 

specifically, the daily product that contains the sum of rainfall and snow water equivalent has 

been used to obtain the mean value of the 38 rainfall maximum monthly cumulates.  

For the periods 2061-2100, the IPSL-CM6A-LR model from the ISIMIP3b data set (Frieler et 

al. 2017) SSP126 and SSP585 scenarios have been employed to obtain the mean of the average 

monthly precipitation.  

The mean year maximum monthly rainfall distribution in current climate conditions has been 

investigated (Figure 2a). Wetter areas are generally more susceptible to rainfall-induced 

landslides than drier areas. This criterion has been considered to classify the mean year 

maximum monthly rainfall into five classes (Table 3) and assign the soil moisture susceptibility 

factor (Sh) accordingly. 

Table 3 Soil moisture susceptibility factor assigned for each of the mean year maximum 
monthly rainfall categories. 

Mean Year Maximum Monthly Rainfall (MYMMR) (mm) Sh 
≤ 125 1 

125 < MYMMR ≤ 250 2 
250 < MYMMR ≤ 500 3 

500 < MYMMR ≤ 1000 4 
MYMMR > 1000 5 
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Figure 2 Mean year maximum monthly precipitation in (a) current climate conditions and in 
the period 2061-2100 with the (b) SSP126 and (c) SSP585 climate change scenarios. 

 

Figure 2 shows the area affected by a given mean year monthly rainfall amounts for the current 

climate, and the two analysed future climate change scenarios (Figures 2b and 2c). As it can be 

observed, it is expected that the area affected by high mean year maximum monthly rainfall 
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amounts will slightly increase in the future. Changes in the spatial distribution of the rainfall can 

explain this observation.  

In the future, some regions will experience higher rainfall accumulations compared to present 

conditions, while other areas might receive less rainfall. As a result, the overall effect is a modest 

increase in the mean year maximum monthly rainfall across a larger geographic area. 

For the case of earthquake-induced landslides, the soil moisture information in the dataset 

Essential Climate Variables for assessment of climate variability from 1979 to the present 

(Hersbach et al. 2018) has been employed.  This dataset is based on the provisional data from 

ECMWF's ERA5 data. Soil moisture information consists of the monthly volumetric water 

content climatology obtained from satellite observations in the top 7 cm of soil with a spatial 

resolution of 0.25°. The mean soil moisture in each pixel has been used for this work.   

Table 4 Soil moisture susceptibility factor assigned for each volumetric water content 
category. 

Volumetric water content (VWC) (m3/m3) Susceptibility, Sh 

≤ 0.16 1: Low-Moderate 

0.16 < VWC ≤ 0.36 2: Moderate 

0.36 < VWC ≤ 1 3: High-Very High 

 

Vegetation factor 
Vegetation can play a significant role in slope stability by providing additional cohesion to the 

soil and reducing soil moisture by means of evapotranspiration. Additionally, being able to 

distinguish between areas with vegetation cover and unvegetated areas can indicate soil 

availability. The C3S Land Cover v2.1 global ICDR Land Cover map for 2000 has been used 

(Copernicus Climate Change Service, Climate Data Store 2019; Defourny et al. 2021) in this 

study. The land cover map has a regular latitude-longitude grid with a 0.002778° resolution 

(approximately 300 m at the equator). Each pixel indicates a categorical land cover class defined 

using UN Land Cover Classification System classifiers.  

Here, the original 38 categories from the land cover map have been re-classified using expert 

criteria and information contained in relevant literature into five classes with relation to non-

resistance to landslides.  
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Table 5  Susceptibility factor for the land cover classes. 

Land cover class Sv 

Bare areas 5 

Sparse vegetation 4 

Grassland 5 

Evergreen shrubs 4 

Shrubs 3 

Close Forest 2 

Open Forest 3 

Agriculture 5 

Agriculture with herbaceous cover 4 

Agriculture combined with shrubs and forest 3 

Water bodies 0 

Permanent Ice 1 

Urban areas 1 
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 Landslide susceptibility index 
The method to obtain landslide susceptibility is similar to that of Nadim et al. (2006), Nadim et 

al. (2013), and Jaedicke et al. (2014). Landslide susceptibility is computed as follows: 

𝑆𝑆 = �𝑤𝑤𝑖𝑖 ∙ 𝑓𝑓(𝑆𝑆𝑖𝑖
𝑖𝑖

) (1) 

where 𝑆𝑆𝑖𝑖 are the slope, lithology, vegetation, and mean of the annual monthly rainfall factors, 

and 𝑤𝑤𝑖𝑖 are the weights of the slope, lithology, vegetation and mean of the annual monthly rainfall 

factors, respectively. The weights of different susceptibility factors were calibrated to the 

information available in landslide inventories and physical processes. 

More specifically, in the GIRI-model, the landslide susceptibility index is defined as: 

𝑆𝑆 =  (𝑆𝑆𝑟𝑟 ∙ [1 + 0.25 (𝑆𝑆𝑙𝑙 − 1)] ∙ [1 + 0.25 (𝑆𝑆ℎ − 1)] ∙ 𝑆𝑆𝑣𝑣) (2) 

where  𝑆𝑆𝑟𝑟 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ [0,  5] 

  𝑆𝑆𝑙𝑙 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ [1,  3] 

  𝑆𝑆ℎ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ [1,  3] 

  𝑆𝑆𝑣𝑣 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ [0.8,  1.2] 

 Assessment of the landslide triggering conditions 

 Rainfall triggering conditions 
Shallow slides and debris flows are generally triggered by severe, short-duration, high-intensity 

rainfall events. Rainfall intensity-duration (I-D) thresholds are commonly used in regional-scale 

landslide early warning systems to assess the hazard a given rainfall situation represents. To 

determine the magnitude of a rainfall situation, the GIRI model uses 24-hour rainfall data to 

assess the return period of a given rainfall event.  

To determine the rainfall triggering potential, the 24-hour rainfall product from the W5E5 

dataset (Lange 2019) has been employed to normalise the 24-hour rainfall intensity of a given 

rainfall scenario as follows:  

𝐼𝐼24ℎ−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐼𝐼24ℎ−𝜇𝜇𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

   (3) 
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where 𝐼𝐼24ℎ represents the 24-hour rainfall intensity of the rainfall event, 𝜇𝜇𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  is the mean value 

of the maximum of the annual 24-hour rainfall intensity at the location of interest, and 𝜎𝜎𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  

represents the standard deviation of the maximum annual 24-hour rainfall intensity at the 

location of interest. 

Table 6 shows the correspondence between 𝐼𝐼24ℎ−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and rainfall return period assuming a 

Gumbel distribution for the maximum annual daily rainfall at a given location. The amount of 

rain within 24 hours with return periods of approximately five years, 25 years, 200 years, and 

1000 years have been selected as thresholds to distinguish between five rainfall hazard classes 

(see Fig. 3 in Section 5). 

Table 6 Correspondence between 𝐼𝐼24ℎ−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and return period obtained for 24-hour rainfall 
intensity. 

I24hr-normalised Return period (years) 
0.72 5 
1.13 10 
1.86 20 
2.0 23.7 
2.6 50 
3.1 100 
3.7 200 
4.4 500 
4.9 1000 
5.0 1087 

  

The terrain will take a long time (decades to centuries) to adapt to a new climate regime. 

Therefore, for future climate scenarios, the triggering rainfall should be normalised with respect 

to the values of  𝜇𝜇𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜎𝜎𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  obtained for today's climate. This approach will capture the 

change in the characteristics of the triggering rainfall in the future. 

 Earthquake triggering conditions 
The model for earthquake-triggered landslide hazard developed for the GAR reports (Nadim et 

al. 2013) used the peak ground acceleration (PGA) from the Global Seismic Hazard Program, 

GSHAP (Giardini et al. 2000; Giardini et al. 2003). The 475-year return period (10% probability 

of exceedance in 50 years) was employed to determine the earthquake-triggering potential in 

that model. Based on the calibrations done previously for the GAR model, PGA values of 0.05g, 

0.15g, 0.25g, 0.35g and 0.45g have been selected as thresholds to define five seismic hazard 
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classes for the GIRI model (see Figure 4 in Section 5). We have considered that earthquakes 

with a PGA smaller than 0.05g have a negligible probability of triggering a landslide. 
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 Scenario-based landslide hazard on roads and railways 
The "landslide hazard index", i.e., the probability of landslide occurrence for a specific triggering 

event, is derived from the combination of the susceptibility index with either the rainfall or 

earthquake triggering conditions. The combination of the susceptibility and the rainfall-

triggering conditions is done according to the hazard matrix in Figure 3.  

 

Figure 3 Hazard matrix used to determine the probability of occurrence of a significant 
rainfall-induced landslide that impacts the 1km stretch of the road or railway as a 
function of 𝐼𝐼24ℎ−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 of the precipitation scenario at that location and the 
Susceptibility Category. 

 

The global (rainfall-triggered) landslide hazard index map has been integrated over rainfall 

events with different return periods to “translate” the combination of landslide hazard category 

and return period of the daily rainfall into the probability of landslide occurrence within an area. 

The probabilities assigned to each hazard class have been calibrated such that the integration 

over all the return periods for the whole globe results in an annual number of significant rainfall-

induced landslides (~400,000 globally) that is consistent with the data presented in the Global 

Landslide Hazard Map (The World Bank 2020). 

Similarly, for earthquake-induced landslides, the susceptibility and the earthquake-triggering 

conditions are combined according to the hazard matrix in Figure 4. If PGA is less than 0.05g, 

the probability of triggering an earthquake-induced landslide is negligible, even for high 

susceptibility categories. The probabilities of each hazard class have been calibrated such that 
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the total number of significant landslides triggered by earthquakes is consistent with the 

approximate 130,000 landslides happening globally each year, as indicated by the World Bank 

report (The World Bank 2020).  

 

Figure 4 Probability of occurrence of a significant earthquake-induced landslide that impacts 
the 1km stretch of the road or railway in question as a function of PGA of the 
earthquake scenario at that location and the Susceptibility Category. 

 

To assess the hazard possessed by landslides on linear infrastructure, we have used a unit of 1km 

length along the road or railway and a 300 m buffer on each side of the road or railway stretch 

(Figure 5). The pixel with the highest susceptibility for earthquake-induced landslide in the 1km 

× 600m unit has been used to determine the probability of a landslide impacting the 1 km stretch 

of the road or railway in question (indicated in Figure 3 and Figure 4). 

 

PGA (g) 
Susceptibility category 

Susc. 1 Susc. 2 Susc. 3 Susc. 4 Susc. 5 

0.05g ≤ PGA < 0.15g ~ 0 ~ 0 ~ 0 0.1% 0.5% 

0.15g ≤ PGA < 0.25g ~ 0 ~ 0 0.1% 0.5% 1% 

0.25g ≤ PGA < 0.35g ~ 0 0.1% 0.5% 1% 5% 

0.35g ≤ PGA < 0.45g ~ 0 0.5% 1% 5% 10% 

PGA ≥ 0.45g ~ 0 1% 5% 10% 40% 
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Figure 5 Schematic of buffer zones around a 1km stretch of road or railway and assigning the 
susceptibility index. Each box in the figure represents a pixel, and the number in the 
box represents the landslide susceptibility class. 
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 Example results 

Figure 6 shows the susceptibility map for rainfall-induced landslides obtained with the GIRI 

model for current climate conditions. As expected, the areas exhibiting a higher susceptibility to 

landslides coincide with mountainous areas with a relatively humid climate. This fact can be 

explained because the slope factor is relevant in susceptibility assessment.  

 

Figure 6 Susceptibility to rainfall-induced landslides obtained with the GIRI model for current 
climate conditions. 

 
Evaluating the performance of landslide susceptibility maps at a global scale is challenging 

because of the limitations of global landslide databases. Here, the rainfall-induced landslides in 

the global NASA COOLR database (Juang et al. 2019) and from selected national (Ekker et al. 

2013) and regional (Palau et al. 2022) inventories have been used for the visual inspection of 

our results for current climatic conditions. Generally, the location of the landslides coincides 

rather well with high-susceptibility areas. Figure 7 shows a zoom over southeast Asia. It can be 

observed that the regions with higher susceptibility coincide with the Himalayas, the Western 

Ghats, and the Zagros mountainous areas, where most landslides have been reported. 
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Figure 7 Susceptibility to rainfall-induced landslides obtained with the GIRI model for current 
climate conditions over Southeast Asia. The Black points represent the Landslides in 
the NASA COOLR database (Kirschbaum et al. 2010; Juang et al. 2019). 

 
Landslide susceptibility maps for the present and the two analysed future climate change 

scenarios  (Figure 8a, Figure 8b)  are generally similar. However, some areas, such as the 

northwest of America and the southeast of Asia, exhibit a slight increase in susceptibility. This 

increase is larger for the SSP585 scenario than for the SSP126 scenario (Figure 8a, Figure 8b). 

On the other hand, our model predicts that landslide susceptibility will decrease slightly in some 

other areas, like Central America and the Iberian Peninsula. However, one must remember that 

this change in susceptibility is only due to the change in the average long-term precipitation 

regime. It could be the case that landslide hazard changes more dramatically if the frequency of 

high-intensity rainfall events decreases or increases. 
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Figure 8 (a) Difference between the susceptibility map for rainfall-induced landslides with 
today's climate and the susceptibility map for the future climate assuming an 
SSP126 scenario. (b) Difference between the susceptibility map for today's climate 
and future climate assuming an SSP585 scenario. 

 
Similarly, in the case of earthquake-induced landslides, the areas that exhibit a high 

susceptibility generally coincide with the locations of mountainous regions. When compared to 
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the susceptibility map for current climate conditions, it can be noticed that the earthquake-

induced landslides susceptibility map displays a higher susceptibility in southeast Asia and 

western America and a lower susceptibility in western Norway. This can be explained because 

the soil moisture factor has a smaller weight in the model for earthquake-induced landslides. 

Thus, the slope angle is more relevant in determining earthquake-induced landslide 

susceptibility.  

 

Figure 9 Susceptibility to earthquake-induced landslides obtained with the GIRI model. 
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 Discussion and conclusions 
A new model to probabilistically assess landslide hazard at a global scale has been developed. 

The GIRI landslide hazard model is used in the Flagship Report of The Coalition for Disaster 

Resilient Infrastructure (CDRI) to evaluate the global risk posed by landslides to road and 

railway infrastructure, both for the present climate regime and for future climate scenarios. 

The GIRI landslide hazard model uses information on the terrain slope angle, lithology, soil 

moisture and vegetation to obtain a susceptibility map. Then, the susceptibility map can be 

combined with information on the rainfall or earthquake landslide-triggering conditions to 

obtain a fully probabilistic hazard map or used in a scenario-based approach with Monte Carlo 

simulations to assess the risk to critical infrastructure (or to other elements at risk). 

The resolution of the GIRI landslide model is much higher than the resolution of the previous 

similar global models. This is mainly because more up-to-date datasets to describe the lithology, 

vegetation, soil moisture, and the terrain slope angle have been employed. In past studies (Nadim 

et al. 2006; Nadim et al. 2013; Jaedicke et al. 2014), a DEM with a resolution of 30 arc seconds 

was used. Here, we have applied a DEM with a resolution of 3 arc seconds, corresponding to 

approximately 90m at the equator. This has allowed a better representation of the slope angle 

over the world. 

Another significant difference with previous models is that for the case of rainfall-induced 

landslides, the mean of the yearly maximum monthly precipitation has been used as a proxy to 

account for soil moisture preconditioning. This has allowed us to obtain susceptibility maps for 

the current climate conditions and future SSP126 and SSP585 climate change scenarios. 

Evaluating the performance of landslide susceptibility maps has been challenging because of the 

limitations in global landslide inventories, which are somewhat incomplete. Generally, the areas 

that exhibit a higher susceptibility coincide rather well with mountainous areas where landslides 

have been reported in global and national landslide databases (Ekker et al. 2013; Juang et al. 

2019; Palau et al. 2022). 

The comparison of the susceptibility maps for rainfall-induced landslides obtained for the 

current climate conditions and the susceptibility maps obtained for the SSP126 and SSP585 

scenarios shows a slight increase of susceptibility in some areas that will be affected by larger 

rainfall amounts. Susceptibility will decrease slightly in other areas, like Central America and 

the Iberian Peninsula. The regions where susceptibility will change in the future are larger for 



Landslide susceptibility and hazard 
  

P a g e  22 | 2 6  
 

the SSP585 climate change scenario Than for the SSP126 scenario. The change in landslide 

susceptibility predicted by the GIRI is only due to modification in the prevailing long-term 

precipitation patterns. Land use changes can also affect susceptibility, and landslide hazard could 

undergo even more pronounced changes if the frequency of occurrence of intense rainfall events 

rises or falls in the future. 

This study analysed the hazard due to rainfall-induced and earthquake-induced landslides 

separately. This decision was taken mainly because the susceptibility factors for the two 

triggering mechanisms might be different. Additionally, the risk (to human life) due to 

earthquake-induced landslides is often included in the earthquake risk, and one should avoid 

counting the same risk twice in a multi-hazard and multi-risk context. 

The rainfall-triggering conditions are based on an extreme-value analysis of 1-day precipitation 

instead of the extreme monthly precipitation used in the GAR model (Nadim et al. 2006; Nadim 

et al. 2013). The earthquake-triggering conditions are assessed in a scenario-based approach 

using the PGA of a simulated earthquake event at a given location. 

An essential limitation of the GIRI landslide model is that it does not account for human-induced 

landslides. Such landslides generally have high economic consequences, such as road and 

railway closures, but rarely result in fatalities. Accounting for the human factor is not 

straightforward, as it depends on human decisions that are not easy to predict. In the future, a 

population density factor could be introduced to account for the increased chance of having a 

landslide triggered by human activity in densely populated areas.   

The developed GIRI landslide hazard model enables users to obtain an event-based landslide 

hazard over roads and railways. The employed methodology in the GIRI model by combining 

susceptibility information and information on the triggering factors is very similar to the 

approach used in regional-scale and global-scale landslide early warning systems (Kirschbaum 

et al. 2009; Krøgli et al. 2018; Palau et al. 2020). However, most regional and global-scale 

landslide early warning systems usually adopt a qualitative or fuzzy logic approach. The GIRI 

landslide model output is a fully probabilistic hazard along linear infrastructures. This is relevant 

for risk assessment. 

The susceptibility maps and hazard outputs provided by the GIRI model should only be utilised 

to gain a general understanding of landslide susceptibility and hazard distribution in current and 

future climate conditions. Due to the input parameters' limitations and our model's calibration, 
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the presented results cannot be applied to assess the landslide hazard at a regional scale or for 

urban planning.  

It is not straightforward to evaluate the vulnerability of roads, railways and other transportation 

infrastructure components using our model. The intensity measure used for characterising 

landslides in physical vulnerability models is the depth and/or velocity of sediments upon 

impact, which are not estimated in our model. Further work needs to be done to quantify 

landslide magnitude at the scale of the analysis. 
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